
DAP-BERT: Differentiable Architecture Pruning
of BERT

Chung-Yiu Yau �, Haoli Bai, Irwin King, and Michael R. Lyu

The Chinese University of Hong Kong
1155109029@link.cuhk.edu.hk, {hlbai, king, lyu}@cse.cuhk.edu.hk

Abstract. The recent development of pre-trained language models (PLMs)
like BERT suffers from increasing computational and memory overhead. In
this paper, we focus on automatic pruning for efficient BERT architectures
on natural language understanding tasks. Specifically, we propose differen-
tiable architecture pruning (DAP) to prune redundant attention heads and
hidden dimensions in BERT, which benefits both from network pruning
and neural architecture search. Meanwhile, DAP can adjust itself to deploy
the pruned BERT on various edge devices with different resource con-
straints. Empirical results show that the BERTBASE architecture pruned
by DAP achieves 5× speed-up with only a minor performance drop. The
code is available at https://github.com/OscarYau525/DAP-BERT.

Keywords: Natural language processing · Neural architecture search ·
Pruning · BERT

1 Introduction

In the study of natural language processing (NLP), pre-trained language mod-
els (PLMs) have shown strong generalization power on NLP tasks [7, 15]. However,
the high computational overhead and memory consumption of these PLMs pro-
hibit the deployment of these models on resource-limited devices, and thus
motivates various efforts towards network compression on PLMs. This area has
been investigated by numerous studies, such as pruning [6, 16, 17], knowledge
distillation [11, 12], quantization [1, 3, 23, 33].

Among these methods, network pruning starts from a pre-defined architecture
and simplifies it by removing unimportant parameters in the network. However,
most existing pruning methods rely on hand-crafted criteria to decide the sub-
network structure, such as the magnitude of parameters [6] or its gradients [20].
On the other hand, neural architecture search (NAS) aims to automatically
search for optimal network architectures and avoids human intervention at
the stage of architecture design. Despite the success of NAS popularized in
convolution neural networks and recurrent neural networks [8, 14], little work
has been put on applying NAS to attention-based Transformer networks such
as BERT. This is due to the expensive pre-training of language models, which
makes the searching process quite time-consuming. While there are some works
that search architecture during the fine-tuning stage [5, 16], they either suffer



2 C.-Y. Yau et al.

from computationally expensive CNN-based cells [5] or inaccurate control of
model size through sparse regularization [16].

In this paper, we propose differentiable architecture pruning (DAP) for BERT,
a novel approach that benefits from both BERT pruning and neural architecture
search. Specifically, our proposed DAP can automatically discover the optimal
head number for self-attention and the dimensionality for the feed-forward
networks given the resource constraints from various edge devices. Inspired
by [14], we assign each architecture choice with learnable parameters, which can be
updated by end-to-end training. Meanwhile, to stabilize the searching algorithm,
we further introduce rectified gradient update for architecture parameters, as
well as progressive architecture constraint, such that the searching process can
proceed smoothly. Finally, to find a sub-architecture that performs comparable
to the original network, we apply knowledge distillation as a clue to architecture
searching and model re-training so that the sub-network mimics the behaviours
of its original network.

We conduct extensive experiments and discussions on the GLUE benchmark
to verify the proposed approach. The empirical results show that the inference
time of our pruned BERTBASE can be accelerated up to 5× with only a minor
performance drop. Moreover, to the limit of compression, our pruned model can
reach up to 27× inference speedup compared with the original BERTBASE model,
while maintaining 95% of its average performance over GLUE tasks.

2 Related Work

Neural network pruning and neural architecture search are both rapidly growing
fields with a large amount of literature. We summarize these two strands of
research that are closely related to our proposed solution in the following sections.

2.1 Network Pruning for BERT

Network pruning aims to remove the unnecessary connections in the neural
network [2, 9, 28, 30]. Gordon et al. [10] investigate the effect of weight magnitude
pruning during the pre-training stage on the transferability to downstream tasks.
Prasanna et al. [20] apply gradient-informed structured pruning and unstructured
weight magnitude pruning on BERT to verify the lottery ticket hypothesis [9],
which indirectly points out the ineffectiveness of sensitivity-based structured
pruning. McCarley et al. [16] incorporate distillation and structured pruning
by L0 regularization. Our proposed structured pruning method differs from the
usual sensitivity-based approaches [16, 20] or weight magnitude approaches [6,
10] since we avoid hand-crafted criteria on pruning. Instead, we adopt a loss
objective that accurately reflects the model FLOPs constraint and the prediction
behaviour of the original model.

2.2 Neural Architecture Search

Neural architecture search (NAS) is to automatize the design of neural network
architecture [14, 27, 35]. Expensive approaches such as reinforcement learning [35]



DAP-BERT: Differentiable Architecture Pruning of BERT 3

and evolutionary algorithm [21] spend thousands of GPU days to obtain the
optimal architecture for computer vision tasks. Recent efforts such as DARTS [14]
follow differentiable architecture search, which adopt continuous relaxations over
all possible operations in the search space for gradient-based optimization. Such
NAS techniques can also be applied for network compression such as pruning [8,
31] and quantization [13, 29, 31]. Especially, TAS [8] search for the optimal
width and depth of CNN-based networks in a similar differentiable fashion and
achieve effective network pruning. For BERT architecture, AdaBERT [5] performs
differentiable cell-based NAS and searches for a novel small architecture by task-
oriented knowledge distillation, and obtains efficient CNN-based models. Recently,
NAS-BERT [32] performs block-wise NAS with knowledge distillation during
the pre-training stage. However, these approaches search the architectures in the
search space from scratch, which can be slow in practice. In this paper, instead
of searching for a novel architecture from scratch, we start from existing BERT
architectures. We follow the differentiable architecture search in a super-graph
defined by the original BERT model to prune potentially ineffective connections.

3 Methodology

In this section, we present differentiable architecture pruning (DAP) for BERT,
an automatic pruning solution that can be tailored for various edge devices with
different resource constraints. The proposed algorithm is initialized with a trained
PLM for the downstream task, which avoids the time-consuming pre-training of
PLMs. An overview of our searching approach is illustrated in Figure 1.

3.1 Definition of Search Space

We aim to find the best layer-wise configuration of heads in multi-head atten-
tion (MHA) and intermediate dimensionality in feed-forward network (FFN) of
the transformer. The search space of MHA and FFN is designed as follows:

Multi-head Attention Recall that with input X to the MHA, the i-th head
Hi can be computed as

Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i , Hi = softmax

(
QiK

T
i√
d

)
Vi, (1)

where WQ
i ,W

K
i ,W

V
i are projection matrices of query, key and value for the i-th

head respectively, and d is the head size. To prune away unnecessary heads, we
assign αm ∈ RN as the architecture parameter for each head, where N is the
total head numbers before pruning. We further assign a sigmoid function that
ensures σ(αm) ∈ [0, 1]N for head selection. Thus, the weighted MHA output can
be written as

MultiHead(Q,K, V ) = Concat(H1 � σ(αm1 ), ..., HN � σ(αmN )) WO. (2)



4 C.-Y. Yau et al.

H3  
H2  

Linear Transform

H1  

Linear Transform

Hidden Representation

Hidden Representation

(a)

MHA

FFN

H12  

H3  
H2  

Linear Transform

H1  

Linear Transform

Hidden Representation

Hidden Representation

(b)

H12  

H2  

Linear Transform

Linear Transform

Hidden Representation

Hidden Representation

(c)

H12  

Fig. 1: An overview of the search method and search space of a BERT hidden
layer, with multi-head attention block in the bottom and feed-forward block on
the top. Dashed arrows represent skip connections. (a) The original network is
initialized as the super-graph. An architecture parameter αi is assigned to each
group of weights of the same color in the diagram. (b) Learning the αi w.r.t.
the objective function. (c) Output the optimal sub-network by selecting α that
exceeds the threshold τ .

Whenever σ(αmi )→ 0, the i-th head can be safely pruned without affecting the
output. Note that for each pruned head, the dimensionality of the projection
matrices WQ, WK , WV and WO will be adjusted accordingly.

Feed-forward Network The feed-forward network is composed of an interme-
diate layer followed by an output layer. We aim at reducing the dimensionality of
the intermediate representation, by introducing architecture parameters αf ∈ RD
for the D intermediate dimensions. The FFN output can thus be written as

FFN(X) = max(0, XW1 + b1) Diag
(
σ(αf )

)
W2 + b2, (3)

where X is the input to FFN, Diag(·) represents the diagonal matrix, and
W1,W2, b1, b2 are the parameters of the two linear layers.

3.2 Differentiable Architecture Pruning

Given the architecture parameters associated with the search space, we follow
differentiable architecture search [14] to update α via end-to-end training. In



DAP-BERT: Differentiable Architecture Pruning of BERT 5

order to find the best architecture on edge devices with different computational
capacities, we also include the network FLOPs as part of the search objective. The
overall searching problem can be formulated as a bi-level optimization problem
as follows:

min
α

L(w∗(α), α)

subject to w∗(α) = argminw L(w,α),

F(α) ≤ Ftarget,

(4)

where F(α) denotes the number of FLOPs based on the architecture α, and Ftarget

is the searching target FLOPs. To satisfy the FLOPs constraint in Equation (4),
we follow [8] to apply FLOPs penalty as a differentiable loss objective Lcost w.r.t.
α as follows:

Lcost =


log(E[F(α)]) if E[F(α)] > (1 + δ)×Fcurr(t),

0 if (1− δ)×Fcurr(t) ≤ E[F(α)] ≤ (1 + δ)×Fcurr(t),

− log(E[F(α)]) if E[F(α)] < (1− δ)×Fcurr(t),

(5)

E[F(α)] =

L∑
l=1

(
H∑

j=1

σ(αm
lj )FMHA +

D∑
j=1

σ(αf
lj)FFFN

)
, (6)

where E[F(α)] is the expected FLOPs of the current architecture summed over
L hidden layers, FMHA and FFFN are the FLOPs of a single head and one
intermediate dimension in FFN, and δ is a tolerance parameter. Fcurr(t) denotes
the target FLOPs, which is time-dependent as will be introduced in Equation (8).

Rectified Update of α During architecture search, we optimize both w and α
by stochastic gradient descent. However, the update of α suffers from vanishing
gradient as a result of the sigmoid activation σ(·). To solve this challenge, we
introduce rectified update for α as follows. We adopt sign stochastic gradient
descent (signSGD) [4] to enlarge the magnitude of gradients on α. It is known that
signSGD avoids the problem of vanishing gradient since the magnitude of gradient
is controlled [18]. Nevertheless, signSGD may bring oscillations that make the
optimization unstable. These rapid oscillations to the architecture parameter
α may lead to an immature solution. To smoothly stabilize the optimization
process, we only backpropagate the top-10% gradient of α according to their
magnitude within the search region, while the rest are masked as follows:

ĝ
(t)
i =

{
sign(g

(t)
i ) if g

(t)
i is top-10% in magnitude,

0 otherwise.
(7)

Progressive Architecture Constraint Directly applying a FLOPs penalty
with a fixed FLOPs target leads α to arrive at the target size early during
searching, while progressive pruning usually better identifies the less influential
parameters [6]. To perform architecture search progressively, we adjust the FLOPs
target Fcurr(t) at time step t as



6 C.-Y. Yau et al.

0 100 200 300 400 500
Time step

25

30

35

40

45
Ex

p.
 #

 a
ttn

. h
ea

ds

0 100 200 300 400 500
Time step

1000

2000

3000

4000

Ex
p.

 #
 F

FN
 in

te
r. 

di
m

en
sio

ns

Prog. cstr. & rect. update Only signSGD Vanilla SGD

Fig. 2: The searching dynamics of different approaches. (Left) shows the expected
number of attention heads. (Right) shows the FFN intermediate dimensions.

Fcurr(t) = Foriginal exp

(
1

T
ln
Ftarget

Foriginal

)t
, (8)

where T is the scheduled number of training steps, Foriginal is the original
architecture FLOPs, and Ftarget is the desired FLOPs.

We visualize the effect of rectified update and progressive architecture con-
straint in Figure 2. It is evident that vanilla SGD suffers from vanishing gradient,
thus cannot achieve pruning. SignSGD directly arrives at the FLOPs target in
the beginning, which may result in sub-optimal architectures. On the other hand,
our progressive FLOPs constraint and rectified update enable smooth searching.

Loss Objective for Searching Due to the intractability of the bi-level problem
in Equation (4), we simultaneously update w and α w.r.t. the objective function
on the training set. The objective function involves two terms: the cross-entropy
between the full-size model logits zt and the searching model logits zs (i.e.,
knowledge distillation); and the FLOPs penalty Lcost as defined in Equation (5).
The searching objective is thus

Lsearch = Lce + λLcost, where Lce = − softmax(zt) · log softmax(zs). (9)

After the training of α, pruning is achieved with a pre-set threshold τ , i.e., only
keeping the connections that satisfy σ(αi) > τ .

3.3 Fine-tuning with Two-Stage Knowledge Distillation

After obtaining the slimmed BERT structure, we further fine-tune the network
to recover from performance degradation due to pruning. The fine-tuning is
based on two-stage knowledge distillation [12] given its previous success in
model compression. The first stage aims at intermediate layer distillation, which



DAP-BERT: Differentiable Architecture Pruning of BERT 7

Algorithm 1: Learning optimal sub-network of BERT

Initialize network weights w from a well-trained model;
Initialize architecture parameters α that satisfy σ(αi) > τ ;
. Searching ;
for T iterations do

Forward pass to compute MHA and FFN by Equation (2), (3);
Update Fcurr(t) according to Equation (8);
Calculate the loss objective in Equation (9);
Backpropagate to update w by Adam optimizer;
Backpropagate to update α with rectified gradient in Equation (7);

end
. Pruning ;
Prune by selecting σ(αi) > τ ;
. Fine-tuning ;
Restore network parameter value from the original network;
Fine-tune the pruned network with two-stage knowledge distillation;

minimizes the mean squared error (MSE) between the sub-network (student) and
the original network (teacher) as follows:

Lint =

L∑
l=1

‖Asl −Atl‖2F + ‖F sl − F tl ‖2F , (10)

where ‖ · ‖F is the Frobenius norm, Asl , A
t
l and F sl , F

t
l denote the MHA attention

maps and FFN output of l-th transformer layer from the student and teacher
model, respectively. Note that as we do not modify the output shape of the student
model, the MSE loss can be directly calculated without linear mapping to align
the dimension as done in [12]. The second stage is prediction layer distillation,
which similarly adopts the cross-entropy loss Lce defined in Equation (9).

In practice, we find that fine-tuning the network parameters immediately
after searching usually lead to sub-optimal performance. Similar observations are
also found in existing NAS literature [14, 19, 27], where instead they initialize the
network parameters and train the architecture from scratch. Similarly, we only
inherit the network structure (i.e., the configuration of heads and dimensions in
MHA and FFN), and restore the parameters from the original model.

3.4 Summary of the Method

Algorithm 1 summarizes the overall workflow of our proposed method, which
can be generally divided into three steps: searching, pruning and fine-tuning.
Firstly, we initialize all architecture parameters by σ(αi) > τ such that all
the prunable MHA heads and FFN dimensions are kept initially. We conduct
searching by simultaneously minimizing the objective function in Equation (9)
w.r.t. architecture parameter α and network parameters w. To facilitate a smooth
searching process, we rectify the update of α according to Equation (7), and



8 C.-Y. Yau et al.

incorporate progressive architecture constraint in Equation (8). After searching,
we apply pruning based on α and restore the network parameters to their original
states. Finally, we conduct two-stage knowledge distillation for fine-tuning.

4 Experiments

In this section, we empirically verify the proposed method on the GLUE bench-
mark [26]. We first introduce the experiment setup in Section 4.1. The main
results are presented in Section 4.2, followed by comparisons with other state-
of-the-art approaches in Section 4.3. Finally, we provide further discussions to
better understand the proposed approach in Section 4.4.

4.1 Experiment Setup

Dataset and Metrics The GLUE benchmark provides a variety of natural
language understanding tasks. Unless specified, we report the metrics of each
task as follows: Matthew’s Correlation for CoLA, F1 score for MRPC and
QQP, Spearman Correlation for STS-B, and accuracy for the remaining tasks.
Following [12], We apply data augmentation to small datasets (RTE, MRPC,
STS-B and CoLA) to improve fine-tuning of the pruned networks.

Implementation The proposed method applies to any well-trained BERT
models on downstream tasks. We take the BERTBASE [7]1 and TinyBERT [12]2

as the super-graph for searching. For each of the super-graphs, we experiment
with different FLOPs constraint Ftarget and compare the performance drop across
different models. For all the experiments, we initialize αi = 5 and use τ = 0.99 as
the pruning threshold. For small datasets, we search for 10 epochs and fine-tune
for 10 epochs. For large datasets, we search for one or fewer epochs (i.e., using part
of the training set) and fine-tune for 3 epochs. Then we fine-tune the sub-network
using Adam optimizer with 5× 10−5 learning rate.

4.2 Experiment Results

We evaluate DAP on BERTBASE, TinyBERT4, and TinyBERT6, and results are
shown in Table 1. We denote our results as +DAP-p%, where p% denotes the
pruning rate. It can be found that the accuracy drop depends on the original
network size, where on the same scale of FLOPs reduction, small networks bear
a larger percentage of accuracy drop than large networks. Notably, BERTBASE

can be pruned to half without accuracy degradation.
Additionally, we also measure the practical inference speedup of the pruned

networks in Table 2. It is shown that FLOPs reduction on the network architecture
can bring up to 5.4× practical speed-up for BERTBASE, and can even be 27.6×
faster for TinyBERT4 with DAP-30%.

1 To obtain the task-specific parameters, we follow the standard fine-tuning pipeline in
https://huggingface.co/bert-base-uncased.

2 Task specific model parameters available at https://github.com/huawei-noah/

Pretrained-Language-Model/tree/master/TinyBERT.



DAP-BERT: Differentiable Architecture Pruning of BERT 9

Table 1: Experimental results of the proposed architecture searching algorithm,
evaluated on the GLUE test set.

# Models
FLOPs
(B)

Param.
(M)

MNLI-m
392k

QQP
363k

QNLI
108k

SST-2
67k

CoLA
8.5k

STS-B
5.7k

MRPC
3.5k

RTE
2.5k

Avg. (%↓)

1 BERTBASE 22.3 109.5 84.0 70.7 91.1 92.7 55.3 82.5 86.6 65.5 78.6 (0.0)
2 + DAP-50% 11.4 66.6 84.2 72.2 90.4 93.2 53.0 83.0 86.6 66.0 78.6 (0.0)
3 + DAP-30% 7.1 51.6 83.6 71.6 89.9 91.9 49.9 82.6 86.5 65.2 77.7 (1.1)
4 + DAP-10% 3.0 33.6 83.0 71.4 88.3 91.8 45.7 81.7 85.8 63.6 76.4 (2.7)

5 TinyBERT6 11.1 67.0 84.6 71.6 90.4 93.1 51.1 83.7 87.3 70.0 79.0 (0.0)
6 + DAP-30% 3.6 37.1 83.7 71.8 89.5 93.0 46.1 83.3 86.9 63.6 77.2 (2.2)

7 TinyBERT4 1.2 14.5 82.5 71.3 87.7 92.6 44.1 80.4 86.4 66.6 76.5 (0.0)
8 + DAP-30% 0.4 11.1 80.8 70.9 84.4 91.8 40.7 78.6 85.4 60.8 74.0 (3.2)

Table 2: Practical speedup of the sub-networks, presenting the inference time for
a batch of 32 examples with 128 maximum sequence length on Intel(R) Xeon(R)
CPU E5-2620 0 @ 2.00GHz with 4 cores.

# Models
FLOPs
(B)

Speedup
(×)

Time
(s)

Practical
Speedup (×)

1 BERTBASE 22.3 1.0 7.28 1.0
2 + DAP-50% 11.4 2.0 3.72 2.0
3 + DAP-30% 7.1 3.1 2.49 2.9
4 + DAP-10% 3.0 7.3 1.36 5.4

5 TinyBERT6 11.1 2.0 3.69 2.0
6 + DAP-30% 3.6 6.2 1.22 6.0

7 TinyBERT4 1.2 17.9 0.62 11.8
8 + DAP-30% 0.4 55.4 0.26 27.6

4.3 Comparison with State-of-the-arts

To further validate the proposed approach, we compare with several state-of-
the-art compression baselines including vanilla BERT [25], DistilBERT [22],
MobileBERT [24], NAS-BERT [32] and Mixed-vocab KD [34]. Evaluations on the
GLUE test set and development set are shown in Table 3 and Table 4 respectively.
The proposed DAP shows superior performance against the baselines. For instance,
our DAP-BERT12-10% achieves the averaged test score of 76.4 with only 3.0
FLOPs (B), which is just 2.2 score lower than the original BERTBASE model
with more than 7× FLOPs reduction.

4.4 Discussion

Rectified Update and Progressive Architecture Pruning The left side
of Figure 3 shows the ablation studies for our rectified update and progressive
architecture constraint. It can be found that when armed with only progressive
constraint, the searching algorithm fails to converge to the desired FLOPs. While
pure signSGD can converge to network architectures with desired FLOPs, the per-
formance is usually worse due to oscillating update of α, as previously discussed
in Figure 2. When combined with the rectified update, the performance is consis-
tently improved at different FLOPs targets. Finally, when the rectified update is



10 C.-Y. Yau et al.

Table 3: Comparison with state-of-the-art compression approaches, evaluated on
the GLUE test set.

# Models
FLOPs
(B)

Param.
(M)

MNLI-m QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

1 BERTBASE 22.3 109.5 84.0 70.7 91.1 92.7 55.3 82.5 86.6 65.5 78.6

2 BERTSMALL 3.4 29.2 77.6 68.1 86.4 89.7 27.8 77.0 83.4 61.8 71.5
3 MobileBERTTINY 3.1 15.1 81.5 68.9 89.5 91.7 46.7 80.1 87.9 65.1 76.4
4 DAP-BERT12 − 10% 3.0 33.0 83.0 71.4 88.3 91.8 45.7 81.7 85.8 63.6 76.4

5 BERTMINI 0.87 11.1 74.8 66.4 84.1 85.9 0.0 73.3 81.1 57.9 65.4
6 Mixed-vocab KD - 10.9 80.7 - - 90.6 - - 87.2 - -
7 DAP-BERT4 − 30% 0.40 11.1 80.8 70.9 84.4 91.8 39.6 78.6 85.4 60.8 74.0

Table 4: Comparison with state-of-the-art compression approaches, evaluated on
the GLUE development set.

# Models
FLOPs
(B)

Param.
(M)

MNLI-m QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

1 NAS-BERT10 2.3 10.0 76.4 88.5 86.3 88.6 34.0 84.8 79.1 66.6 75.5
2 DistilBERT6 - 66.0 82.2 88.5 89.2 91.3 51.3 86.9 87.5 59.9 79.6
3 DAP-BERT12 − 10% 3.0 33.0 82.8 90.6 88.9 91.9 52.3 88.2 85.3 67.5 80.9

4 NAS-BERT5 0.86 5.0 74.4 85.8 84.9 87.3 19.8 83.0 79.6 66.6 72.7
5 DAP-BERT4 − 30% 0.40 11.1 81.2 90.6 86.2 92.2 45.8 85.8 86.0 63.2 78.9

combined with progressive architecture constraint, the network performance is
boosted since the searching dynamics is smooth and stabilized.

0.2 0.4 0.6 0.8
FLOPs ratio

0.325

0.350

0.375

0.400

0.425

0.450

0.475

M
et
ric

 m
cc

Prog. cstr. & rect. update
Rect. update
Prog. cstr.
Only signSGD

0.1 0.2 0.3 0.4 0.5
FLOPs ratio

0.300

0.325

0.350

0.375

0.400

0.425

0.450

M
et
ric

 m
cc

Search & f.t. by distillation
Search & f.t. w.r.t. data labels

Fig. 3: (Left) shows the architecture accuracies under different approaches.
(Right) shows the effect of knowledge distillation for searching and fine-tuning.

Distillation for Architecture Searching We verify the advantage of knowl-
edge distillation (soft labels from the original model) over data labels (hard labels
from ground truth) by comparing the performance of the architectures found
using these search objectives. The empirical result in the right of Figure 3 shows
that knowledge distillation using soft labels can generally find better architectures
than using the ground truth data labels.



DAP-BERT: Differentiable Architecture Pruning of BERT 11

5 Conclusion

In this paper, we propose differentiable architecture pruning, an automatic neural
architecture search for BERT pruning. Given the resource constraints from
edge devices, the proposed approach can identify the best model architecture
accordingly. Empirical results on the GLUE benchmark show that the pruned
BERT model can perform on par with the original network, while enjoying
significant inference speedup. Our work opens the door to deploying PLM to
resource-limited edge devices and contributes to the various applications of NLP.

Acknowledgement

The work described in this paper was partially supported by the National Key
Research and Development Program of China (No. 2018AAA0100204) and the
Research Grants Council of the Hong Kong Special Administrative Region, China
(No. CUHK 14210920 of the General Research Fund).

References

1. Bai, H., Hou, L., Shang, L., Jiang, X., King, I., Lyu, M.R.: Towards efficient post-
training quantization of pre-trained language models. Preprint arXiv:2109.15082
(2021)

2. Bai, H., Wu, J., King, I., Lyu, M.: Few shot network compression via cross distillation.
In: AAAI. vol. 34, pp. 3203–3210 (2020)

3. Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu, Q., Lyu, M., King,
I.: BinaryBERT: Pushing the limit of BERT quantization. In: ACL (2020)

4. Bernstein, J., Wang, Y.X., Azizzadenesheli, K., Anandkumar, A.: signSGD: Com-
pressed optimisation for non-convex problems. In: ICML (2018)

5. Chen, D., Li, Y., Qiu, M., Wang, Z., Li, B., Ding, B., Deng, H., Huang, J., Lin, W.,
Zhou, J.: AdaBERT: Task-adaptive BERT compression with differentiable neural
architecture search. In: IJCAI (2021)

6. Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang, Z., Carbin, M.: The
lottery ticket hypothesis for pre-trained BERT networks. In: NeurIPS (2020)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: NAACL-HLT (2019)

8. Dong, X., Yang, Y.: Network pruning via transformable architecture search. In:
NeurIPS (2019)

9. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: ICML (2018)

10. Gordon, M.A., Duh, K., Andrews, N.: Compressing BERT: Studying the effects of
weight pruning on transfer learning. In: ACL (2020)

11. Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., Liu, Q.: DynaBERT: Dynamic
BERT with adaptive width and depth. In: NeurIPS (2020)

12. Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F., Liu, Q.:
TinyBERT: Distilling BERT for natural language understanding. In: EMNLP
(2020)

13. Li, Y., Wang, W., Bai, H., Gong, R., Dong, X., Yu, F.: Efficient bitwidth search for
practical mixed precision neural network. Preprint arXiv:2003.07577 (2020)



12 C.-Y. Yau et al.

14. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. In: ICLR
(2019)

15. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized BERT pretraining
approach. Preprint arXiv:1907.11692 (2019)

16. McCarley, J.S., Chakravarti, R., Sil, A.: Structured pruning of a BERT-based
question answering model. Preprint arXiv:1910.06360 (2021)

17. Michel, P., Levy, O., Neubig, G.: Are sixteen heads really better than one? In:
NeurIPS (2019)

18. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. In: ICML (2013)

19. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture
search via parameter sharing. In: ICML. pp. 4092–4101 (2018)

20. Prasanna, S., Rogers, A., Rumshisky, A.: When BERT plays the lottery, all tickets
are winning. In: EMNLP (2020)

21. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image
classifier architecture search. In: AAAI (2019)

22. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. In: NeurIPS (2020)

23. Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer,
K.: Q-BERT: Hessian based ultra low precision quantization of BERT. In: AAAI
(2019)

24. Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., Zhou, D.: MobileBERT: a compact
task-agnostic BERT for resource-limited devices. In: ACL (2020)

25. Turc, I., Chang, M.W., Lee, K., Toutanova, K.: Well-read students learn better:
On the importance of pre-training compact models. Preprint arXiv:1908.08962v2
(2019)

26. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: GLUE: A
multi-task benchmark and analysis platform for natural language understanding.
In: ICLR (2019)

27. Wang, J., Bai, H., Wu, J., Shi, X., Huang, J., King, I., Lyu, M., Cheng, J.: Revisiting
parameter sharing for automatic neural channel number search. In: NeurIPS. vol. 33
(2020)

28. Wang, J., Bai, H., Wu, J., Cheng, J.: Bayesian automatic model compression. IEEE
JSTSP 14(4), 727–736 (2020)

29. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: Haq: Hardware-aware automated
quantization with mixed precision. In: CVPR. pp. 8612–8620 (2019)

30. Wen, L., Zhang, X., Bai, H., Xu, Z.: Structured pruning of recurrent neural networks
through neuron selection. NN pp. 134–141 (2020)

31. Wu, J., Zhang, Y., Bai, H., Zhong, H., Hou, J., Liu, W., Huang, J.: Pocketflow: An
automated framework for compressing and accelerating deep neural networks. In:
NeurIPS, CDNNRIA workshop (2018)

32. Xu, J., Tan, X., Luo, R., Song, K., Li, J., Qin, T., Liu, T.Y.: Nas-BERT: Task-
agnostic and adaptive-size BERT compression with neural architecture search. In:
KDD (2021)

33. Zhang, W., Hou, L., Yin, Y., Shang, L., Chen, X., Jiang, X., Liu, Q.: TernaryBERT:
Distillation-aware ultra-low bit BERT. In: EMNLP (2020)

34. Zhao, S., Gupta, R., Song, Y., Zhou, D.: Extremely small BERT models from
mixed-vocabulary training. In: EACL (2021)

35. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: CVPR (2018)


