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Background — Neural Network Quantization

• Modern deep learning models are super high-dimensional and memory consuming.
• While large model trained on high precision is accurate and present exceptional
generalization ability, they are practically expensive to use. For example, a typical 8×
H100 / A100 server has 640 GB GPU VRAM in total.

Model Size FP16 INT4

8B 16 GB 4 GB
70B 140 GB 35 GB
405B 810 GB 203 GB

Table 1: Llama 3.1 GPU VRAM requirement for loading the model weights over different model sizes
and weight precisions. (https://huggingface.co/blog/llama31)

• It calls for the development of model quantization that represent neural networks using
low precision data-types such that INT4 and preserve the accuracy of prediction.
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Quantization-Aware Training (QAT) Formulation

To train a neural network with low-precision data-type weights, we solve the following
Quantization-Aware Training (QAT) problem with a stochastic training objective function
f(w, ξ) : Rd × Ω → R\{−∞}:

min
w∈Rd

Eξ[f(Q(w), ξ)] (1)

for a quantization function Q(w) = Decode(Encode(w)), Encode : Rd → Nd × R,
Decode : Nd × R → Rd that enables memory efficient representation, such as blockwise
uniform symmetric quantization: by separating w into n blocks w = [w[1], ...,w[n]],

Q(w[i]) = clampb

(⌊
w[i]

s(w[i])

⌉)
︸ ︷︷ ︸

b-bits integer tensor

s(w[i]) (2)

where s(w[i]) = max(|w[i]|)/(2b−1 − 1) scales a block of weight values into the
b-bits-representable integer range.
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Existing QAT Algorithm — Straight-through Estimator (STE)

• [Courbariaux et al. 2015; Liu et al. 2023] solve the above problem with straight-through
estimated (STE) stochastic gradient:

wt+1 = wt − η∇f(w, ξt)|w=Q(wt) (3)

where STE approximates the gradient of a non-differentiable quantization function Q by

∂Q(wi)

∂wi
≈ 1 (4)

• [Liu et al. 2023] successfully applied STE to train weight-activation quantized LLMs when
quantization error Q(w[i])−w[i] is small.
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Our Problem — Quantizing Fine-tuned LLM

• Supervised fine-tuning adapts pre-trained LLMs to downstream tasks.

• Prior works perform quantization after training for efficient LLM deployment.

• To obtain quantized fine-tuned LLMs, conventional pipelines would first fine-tune the
pre-trained models, followed by post-training quantization.

We investigate quantization-aware supervised fine-tuning (QA-SFT) to obtain effective
fine-tuned and quantized LLM through a single training phase.
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Main Issue — Large Quantization Error due to Outlier Values

• Outlier values in weight and activation leads to large error in 4-bits uniform quantizer.
• Rotation-based methods (Ashkboos et al. 2024) apply rotations to linear projection

layers and KV caches in LLMs effectively mitigates weight and activation outliers.

(a) Without rotation X. (b) With rotation RX.

Figure 1: Visualizations of input activations X (resp. RX) at layer 30 of Llama model.
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Rotation Matrices yield Accurate Quantized Linear Projection

Suppose R(ζ) = HDiag(r(ζ)) where H is a Hadamard rotation matrix and r(ζ) ∈ {−1, 1}d is
a random sign vector. Then, we have R(ζ)⊤ = R(ζ)−1 and

Q(R(ζ)w)⊤Q(R(ζ)x) ≈ w⊤x when Q(R(ζ)w) ≈ R(ζ)w, Q(R(ζ)x) ≈ R(ζ)x (5)

Consider a bw-bits symmetric quantizer Qw, we compare

• Quantization error without rotation:

∥Qw(w)−w∥2 ≤ dmaxiw
2
i

4(2bw−1 − 1)2
. (6)

• Quantization error with rotation (Tseng et al. 2024): with high probability,

∥Qw(R(ζ)w)−R(ζ)w∥2 ≤ log(4d/δ)

2(2bw−1 − 1)2
∥w∥2. (7)

• The former bound is more sensitive to weight outliers, i.e., maxiwi ≫ ∥w∥2.
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Rotation in LLM Modules
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Figure 2: An illustration of the rotation workflow in a transformer-based model. R1 represents the
between-block rotation, which eliminates activation outliers between blocks. R2,R3,R4 are in-block rotations
designed to remove outliers within the MHSA and MLP blocks.
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Proposed Algorithm: RoSTE

• RoSTE: Rotation-based quantization for QA-SFT using Straight-Through Estimator.
◦ We propose an adaptive selection of rotation matrices during training.

• We utilize a bilevel optimization formulation that simultaneously tackles QA-SFT and
selects the rotation matrices based on the current weights and activations:

min
{Wi}ℓ−1

i=0

LSFT

(
Q( · ; {Wi,R

⋆
i }ℓ−1

i=0)
)

s.t. {R⋆
i }ℓ−1

i=0 ∈ arg min
{Ri}ℓ−1

i=0

E({Wi,Ri}ℓ−1
i=0) s.t. RiR

⊤
i = I,

where the lower level optimal rotation matrices {R⋆
i }

ℓ−1
i=0 minimize the weight-activation

quantization error:

E({Wi,Ri}ℓ−1
i=0) =

ℓ−1∑
i=0

∥∥Qw(R
⊤
i Wi)−R⊤

i Wi

∥∥2 + 1

n

ℓ−1∑
i=0

n−1∑
j=0

∥∥Qx(Xi,jRi)−Xi,jRi

∥∥2
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Proposed Algorithm: RoSTE

Input: Pre-trained model parameters {Wpt
i }ℓ−1

i=0 , step size η > 0.
Initialize: W0 = {Wpt

i }ℓ−1
i=0 .

for k = 0, . . . ,K − 1 do

/* Rotation configuration */

Find an approximate lower level solution

Rk = argmin
Ri∈{H,I}

E(WkT , {Ri}ℓ−1
i=0), (8)

for identity matrix I or random Walsh-Hadamard matrix H.

for t = 0, . . . , T − 1 do

/* QAT Stage via STE */

WkT+t+1 = WkT+t − η ∇
s.t.e.

WLSFT(mQ(·;WkT+t,Rk); ξkT+t) (9)

Output: Quantized fine-tuned mQ( · ;WKT ,RK−1).
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Theoretical Insights of RoSTE

Consider a simple linear regression problem with quantized linear model:

L̂(w,R) :=
1

2
Eξ

[
(Qx(Rxξ)

⊤Qw(Rw)− yξ)
2
]
, (10)

Convergence of RoSTE [Theorem 4.3]

Under mild conditions, the weight-activation quantization-aware training of a quantized linear
model on least-square loss L̂ converges to

E[L̂(wt+1,R)] ≤ (1− µ)t+1 L̂(w0,R) + (6 + 2µ−1)
t+1∑
s=0

(1− µ)t−s ∥e(ws)∥2G

= O(E[∥Qw(Rwt)−Rwt∥2]) when t → ∞ (11)

for 0 < µ < 1 and e(x) := Qw(x)− x, i.e., proportional to weight quantization error of the
converged solution.
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Experiments

Table 2: Exp. 1. Accuracies of the 4-bit quantized Pythia 6.9B and Qwen2.5 7B models fine-tuned
using the Reddit TL;DR dataset. FP16 and BF16 refer to using 16-bit half-precision floating points
and 16-bit brain floating points formats, respectively, and W4A4KV4 refers to using 4-bit quantizations
on weights, activation, and KV cache.

Bit-width Method ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSum ROUGE (Avg.)

Pythia-6.9B

FP16
Base 28.81 9.45 22.29 22.91 20.87
SFT 33.69 12.60 26.27 26.31 24.72

W4A4KV4

RTN 7.42 0.06 6.53 6.56 5.14
GPTQ 8.16 0.08 7.06 7.60 5.73
QuaRot 11.70 0.23 8.52 9.39 7.46

SpinQuant 8.61 0.10 8.10 8.07 6.22
STE 28.91 9.07 22.30 22.33 20.65

RoSTE 32.60 11.54 25.25 25.25 23.66
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Experiments

Bit-width Method ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSum ROUGE (Avg.)

Qwen2.5-7B

BF16
Base 32.72 11.82 25.18 25.42 23.79
SFT 34.75 13.59 27.56 27.58 25.87

W4A4KV4

RTN 1.07 0.00 1.01 1.01 0.77
GPTQ 0.72 0.00 0.69 0.69 0.53
QuaRot 7.21 0.10 5.93 5.93 4.79

SpinQuant 6.87 0.29 5.97 6.12 4.81
STE 30.86 10.16 23.73 23.73 22.12

RoSTE 34.01 12.89 26.74 26.74 25.10
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Experiments

Table 3: Exp. 2. Accuracies of the 4-bit quantized Llama 3.1 8B model fine-tuned on the Tulu 3
SFT mixture dataset. BF16 refers to using 16-bit brain floating points format, and W4A4KV4 refers to
using 4-bit quantizations on weights, activation, and KV cache.

Bit-width Method TruthfulQA MMLU-Pro BigBenchHard AGIEval GSM8K Math Avg.

BF16
Base 28.51 19.57 62.26 30.16 56.86 18.20 35.92
SFT 31.82 33.07 65.67 34.86 64.89 22.66 42.16

W4A4KV4

RTN 23.01 0 0 17.03 1.03 0 6.85
GPTQ 25.34 0.02 2.55 16.48 2.05 0 7.74
QuaRot 27.66 21.53 47.69 29.05 37.91 6.90 28.46

SpinQuant 26.19 21.58 49.56 28.50 38.36 10.56 29.13
STE 26.68 9.13 24.58 17.63 22.82 1.90 17.14

RoSTE 26.44 25.12 52.00 30.11 44.50 11.94 31.69
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Experiments
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Figure 3: RoSTE surpasses the performance of SOTA quantization methods on fine-tuning benchmark.
Horizontal axis represents the total amount of hours needed to fine-tune pre-trained LLMs on a server
of 8 × A100 NVIDIA GPUs.
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Conclusion

• We proposed the RoSTE algorithm for QA-SFT with an adaptive rotation strategy.

• Besides achieving state-of-the-art performance, we also provide theoretical insights to
justify the practical efficacy of RoSTE.

• To the best of our knowledge, this is the first algorithm that leverages adaptive rotation
and the fine-tuning objective to produce an accurate quantized model.
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